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A 3D friction contact model has been developed for the prediction of the
resonant response of structures having 3D frictional constraint. In the proposed
model, a contact plane is defined and its orientation is assumed invariant.
Consequently, the relative motion of the two contacting surfaces can be resolved
into two components: the in-plane tangential motion on the contact plane and the
normal component perpendicular to the plane. The in-plane tangential relative
motion is often two-dimensional, and it can induce stick–slip friction. On the other
hand, the normal relative motion can cause variation of the contact normal load
and, in extreme circumstances, separation of the two contacting surfaces. In this
study, the joined effect of the 2D tangential relative motion and the normal relative
motion on the contact kinematics of a friction contact is examined and analytical
criteria are developed to determine the transitions among stick, slip, and
separation, when experiencing variable normal load. With these transition criteria,
the induced friction force on the contact plane and the variable normal load
perpendicular to the plane can be predicted for any given cyclic relative motions
at the contact interface and hysteresis loops can be produced so as to characterize
the equivalent damping and stiffness of the friction contact. These non-linear
damping and stiffness along with the harmonic balance method are then used to
predict the resonant response of a frictionally constrained 3-DOF oscillator. The
predicted results are compared with those of the time integration method and the
damping effect, the resonant frequency shift, and the jump phenomenon are
examined.
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1. INTRODUCTION

Mechanical systems in which moving components are mutually constrained
through frictional contacts often lead to complex contact kinematics. When
examining the contact kinematics of many systems, such as turbine blade systems
[1–7] and automotive clutches [8], a contact plane can usually be defined and its
orientation can be assumed to be invariant when the amplitude of vibration is
relatively small. Consequently, the relative motion of the two contacting surfaces
can be resolved into two components: the in-plane tangential motion on the
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contact plane and the normal component perpendicular to the contact plane. The
in-plane tangential relative motion is often two-dimensional, and it can induce
stick–slip friction [9, 10]. The resulting stick–slip friction often provides additional
spring resistance and friction damping [11] to the system. On the other hand, the
normal relative motion can cause variation of the contact normal load and, in
extreme circumstances, separation of the two contacting surfaces [4, 12–14].

In the authors’ earlier study [15], a simplified version of 3D contact kinematics
was investigated, in which the relative motion retains the normal component that
causes normal load variation, while the in-plane tangential component of the
relative motion degenerates into linear motion. Based on these simplified 3D
contact kinematics, a variable normal load friction force model was developed to
characterize the non-linear stiffness and damping of the friction contact
experiencing normal load variation and moving back and forth tangentially.

In this study, the joined effect of the 2D tangential relative motion and the
normal relative motion on the contact kinematics of a friction contact is examined.
This study focuses on the development of a 3D contact model which can be used
to determine the effective stiffness and damping of a friction contact. Moreover,
the non-linear effect of the general 3D contact kinematics on the resonant response
of a frictionally constrained structure is studied. It will be shown that the stick–slip
phenomenon caused by 3D contact kinematics becomes complicated due to the
normal load variation, the possible interface separation, and the 2D tangential
relative motion. For example, when a friction contact experiences simple contact
kinematics involving linear (tangential) relative motion and contact normal load,
the slip-to-stick transition can be accurately predicted using the condition when
the (tangential) relative motion reverses its direction. However, when a friction
contact experiences 3D contact kinematics, the ‘‘reversion rule’’ is not well defined
because the contact point moves in a closed path and may never actually reverse
its direction. Moreover, the normal variation also affects the occurrence of the
transitions among stick, slip, and separation. Hence, the major issue in
characterizing the 3D contact kinematics is to derive the necessary analytical
criteria that accurately predict the transition conditions so as to assess the induced
friction force.

When predicting the resonant response of a frictionally constrained structure,
the induced periodic friction force along with the variable contact normal load at
the friction contact can often be approximated by effective stiffness and equivalent
damping over a cycle of motion. The resulting stiffness and damping can then be
incorporated with the harmonic balance method to predict the forced response of
a frictionally constrained structure. In this paper, a 3-DOF oscillator constrained
by a friction contact is used as an example and its forced response will be
calculated using the approach developed in this study. Based on the predicted
results, the influences of the induced friction force and the variable contact normal
load on the resonant response of a frictionally constrained structure will be
discussed. The predicted results are compared with those of the time integration
method and the resulting damping effect, the resonant frequency shift, and the
jump phenomenon are examined.
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Figure 1. 3D contact kinematics.

2. 3D CONTACT KINEMATICS

Figure 1 shows two vibrating bodies mutually constrained through a frictional
contact. The contact interface between these two vibrating bodies can be modelled
as a substructure that contains a massless elastic element and a friction contact
point, as depicted in Figure 2. The elastic element accounts for the shear and
normal stiffness properties of the interface, and it is characterized by a 2×2
stiffness† matrix Ku for the shear stiffness† and a spring constant kv for the normal
stiffness. The friction contact point, that is assumed to obey the Coulomb friction
law with the friction coefficient m when in contact with body 2, can undergo
tangential stick–slip motion, and may experience intermittent separation from

Figure 2. A model of the friction interface experiencing 3D contact kinematics.

†The 2×2 shear stiffness matrix is used because the tangential relative motion is two-dimensional. If the shear
stiffness property is isotropic, a spring constant kv can be used, and the 2×2 shear stiffness matrix becomes kvI,
where I is the 2×2 identity matrix.
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body 2 when the normal relative motion (v) becomes large. The contact interface
is assumed to have either a preload or an initial gap (as designed by n0). This model
allows a negative preload to represent the situation when the interface has an
initial gap; the equivalent preload across the interface with a gap e is calculated
as −kve. In this model, u and v are the input tangential relative motion and normal
relative motion of the contact interface respectively, and they can be evaluated as
the motion of body 1 with respect to body 2.

2.1.  

The constrained force consists of two components: the induced friction force on
the contact plane and the variable normal force. Since the friction force is
completely characterized by the relative motion, it will not lose generality to
assume one of the contacting surfaces is the ground. With this assumption, the
input tangential relative motion u, the slip motion of the contact point w, and the
induced friction force f are vectors parallel to the ground; the normal relative
motion v and the normal load n are scalars. The friction force, acting on the
ground, can be expressed as

f=Ku(u−w). (1)

The normal load is taken as the sum of the preload n0 plus the variation caused
by v, and it can be expressed as

n=6n0 + kvv,
0,

when ve−n0/kv

when vQ−n0/kv7. (2)

The proposed friction contact model can be applied to the most general 3D
friction contact problem, where the orientation of the contact plane may oscillate
when the structure vibrates. However, in this paper, its application is limited to
the case, in which the orientation of the contact plane can be assumed to be
invariant. In many mechanical systems, this assumption is reasonable if the
amplitude of vibration is relatively small when compared to the overall dimension
of the structure.

2.2. ,   

Depending on the amplitude and phase of the various components of the
vibratory motion, the friction contact will either stick, slip or separate during a
cycle of oscillation. When the vibratory motion is really small, the contact point
sticks and the friction force is proportional to the displacement u with reference
to w= 0, as implied in equation (2). According to the Coulomb friction law, the
magnitude of the friction force is always limited by the varying slip load mn.
During the course of the vibration, the interface may reach a point where the
friction force tends to exceed the slip load and begin to slip. Subsequently, the
friction force remains equal to the slip load, and slip takes place along the direction
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Figure 3. Stick-to-slip transition.

of the friction force until the contact point sticks again. In other words, the stick
and slip conditions can be expressed as follows.

Stick condition: =f=Ku(u− u0)+ f0=Q mn, ẇ= 0; (3)

Slip condition: f= mn ẇ/=ẇ=, ẇ$ 0; (4)

where u0 and f0 are the initial values of u and f at the beginning of the stick state.
During the cycle of motion, the applied variable normal load may vanish to cause
the interface to separate; consequently, the friction force is not present.

3. STICK/SLIP/SEPARATION TRANSITION

As mentioned, the major issue in characterizing the 3D contact kinematics is
to derive the necessary analytical criteria that accurately predict the transition
conditions so as to assess the induced friction force.

3.1. -- 

The transition occurs when =f=Ku(u− u0)+ f0== mn. Figure 3 exemplifies
graphically how the stick-to-slip transition can be obtained. In this figure, the slip
load (mn) is displayed as the length of a force vector in the radial direction defined
by u. Since the normal load varies with u, the slip load boundary is no longer a
circle as in the case of constant normal load but has a varying magnitude. The
transition angle uE

P can be found to be the moment when the trajectory
Ku(u− u0)+ f0 intersects with the slip load boundary. When considering an
elliptical tangential relative motion u=[A sin u B sin (u+f)]T and a variable
normal load n= n0 + kvD sin (u+c), where u=vt, the criterion can be
transformed into a quartic equation [16], whose solutions are available in
analytical form [17]. Since multiple solutions may appear, the redundant solutions
can be eliminated by using the constraint =f� =Q mṅ that guarantees the magnitude
of the friction force to have a tendency to exceed the slip load.
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3.2. -- 

The transition occurs when ẇ= 0. However, to implement this criterion, it need
be expressed in terms of the input tangential relative motion u and the variable
normal load n. During the slip state, according to the Coulomb friction law as
described in equation (4), the slip velocity of the contact plane ẇ is along the
direction of the friction force,

ẇ= cf, where cq 0. (5)

Since the magnitude of the friction force is equal to the slip load, one has

fTf= m2n2. (6)

Differentiating the above equation with respect to time gives

fTf� = m2nṅ. (7)

Considering equation (5) and the time differentiation of equation (1)
f� =Ku(u̇− ẇ), the above equation becomes

fTKuu̇− cfTKuf= m2nṅ, (8)

or

c=(fTKuu̇− m2nṅ)/fTKuf. (9)

Therefore, from equation (5), one can obtain

ẇ=[(fTKuu̇− m2nṅ)/fTKuf]f. (10)

Substituting this equation into f� =Ku(u̇− ẇ) yields

f� =Ku(u̇−(fTKuu̇/fTKuf)f). (11)

Also, from equation (10), the slip-to-stick transition criterion ẇ= 0 implies

fTKuu̇− m2nṅ=0. (12)

However, it should be noted that f still remains undetermined at this stage. To
obtain f, the initial value problem involving equation (11) and the known initial
friction force at beginning of the slip state can be solved using a numerical
integration scheme such as the Runge–Kutta method. Once the friction force is
obtained, the criterion (12) can be used to predict the occurrence of the slip-to-stick
transition.

3.3.     /

The transition from stick/slip to separation occurs when the normal load
vanishes. In addition, the normal load should be decreasing at this moment to
guarantee the occurrence of the separation. In other words, the criterion can be
expressed as

n=0, ṅQ 0. (13)
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Similarly, the separation ends when the normal load is about to develop, and
therefore the moment of this occurring transition can be determined by the
criterion

n=0, ṅe 0. (14)

After the separation ends, the interface resumes contact and its following state,
either stick or slip, has to be further determined.

When the normal load and the friction force begin to develop at the end of the
separation, their rates of change at this moment determine the following state. If
the interface becomes stuck after the separation, according to the Coulomb friction
law, the following condition has to be satisfied:

=f� =Kuu̇=Q mṅ. (15)

Squaring both sides yields

u̇TKT
u Kuu̇Q m2ṅ2. (16)

If the criterion (16) is not satisfied, that is

u̇TKT
uKuu̇e m2ṅ2, (17)

the interface begins to slip after the separated surface resumes contact. It is noted
that this incipient slip condition can be regarded as a one-dimensional case,
because the friction force is not present at this particular moment and the slip
action will be developed along u̇. Thus, according to the Coulomb friction law,
the rate of change of the developing friction force can be expressed as

f� = mṅu̇/=u̇=. (18)

Once the friction force develops, it can be further determined by solving the initial
value problem as described previously.

4. EFFECTIVE STIFFNESS AND DAMPING

With these transition criteria, the induced friction force on the contact plane and
the variable normal load perpendicular to the contact plane can be predicted for
any given cyclic relative motions at the contact point and hysteresis loops can be
produced so as to characterize the equivalent damping and stiffness of the friction
contact. The non-linear damping and stiffness along with the harmonic balance
method can be integrated together to obtain a set of non-linear algebraic
equations, which can be solved iteratively for the resonant response of a
frictionally constrained structure [3, 6].

4.1. -- 

Since the harmonic balance method will be used, the input motions are now
assumed to be harmonic functions. For given elliptical tangential relative motion
and harmonic normal motion, the induced steady state friction force can be
attained using a ‘‘state-by-state simulation’’ by calculating the stick/slip/separation
transitions sequentially. Figure 4 shows a typical example of the resulting friction
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Figure 4. A friction force trajectory for the no-separation case.

force for the no-separation case. In this figure, the variable slip load, mn, is shown
as a dashed trajectory. The force trajectory has several segments. Those falling on
the slip load boundary correspond to slip state and the others to stick state. The
simulation starts from the stick state with zero friction force; then the stick-to-slip
transition angle u1 can be predicted by solving the corresponding stick-to-slip
transition criterion, and the simulation proceeds to the slip state until the next
slip-to-stick transition angle u2 is encountered. The simulation continues in the
same manner to find the transition angles (u3, u4, . . . , etc.) until the steady state
(periodic) friction force is reached. In steady state, the variable slip load also forms
a closed trajectory that limits the range of the induced friction force. As can be
seen from this example, the steady state friction force is attained within a few
cycles. This is due to the fact that the transition angles can be accurately calculated
using the analytical transition criteria developed.

Figure 5. A friction force trajectory for the separation case.
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Figure 6. Friction force trajectory and applied normal load: (a) normal load is constant; (b)
normal load has moderate variation; (c) normal load has large variation; (d) normal load has very
large variation that causes separation.

Figure 5 shows the state-by-state simulation of a friction force trajectory having
separation. Since the interval of the separation during one cycle of motion can be
calculated in advance, say u1 for the end of the separation and u4 for the beginning
of the separation, the steady state friction force can be reached within one cycle
by performing the simulation starting from u1 to u4. As shown in this figure, the
interface becomes slipping after the separation and proceeds to the stick state at
u2. Then the stuck interface returns to the slip state again at u3 and keeps slipping
until it separates at u4.

4.2.     

To demonstrate the effect of the normal load variation on the induced steady
state friction force, four cases having different normal load variations are
investigated, and their resulting steady state friction force trajectories are shown
in Figure 6. In the case of constant normal load, the slip load (mn) is shown as
a circle and the interface undergoes an alternating stick-slip motion. It can be seen
that the resulting friction force trajectory is symmetrical to the origin. As the
normal load variation increases to be moderate as case (b), the interface still
undergoes an alternating stick-slip motion, but the resulting friction force
trajectory is twisted towards the area of the greater slip load. The distortion
becomes even more severe in the case of larger normal load variation. When the
normal load variation is sufficiently large to cause the interface to separate for a
portion of a cycle of motion as in case (d), the friction force trajectory stays at
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the origin during the interval of separation as the friction force is not present, and
only a part of the cyclic motion can induce the friction force. From these results,
it is clear that the normal load variation can affect the induced friction force
significantly and, thus, the stiffness and damping characteristics of the interface.

4.3.     

Once the steady state friction force is obtained, its Fourier coefficients can be
calculated to estimate the time invariant term, stiffness, and damping. For input
elliptical tangential relative motion and sinusoidally varying normal load, say
u=[a sin vt b sin (vt+f)]T and n= n0 + kvc sin (vt+c), the state-by-state
simulation approach is used to evaluate the induced periodic friction force.
Considering the time invariant term and the first harmonic terms of the Fourier
series, the periodic friction force can be approximated as

f=6fu1

fu2716 fb,u1 + fs,u1 sin vt+ fc,u1 cos vt
fb,u2 + fs,u2 sin"vt+f#+ fc,u2 cos"vt+f#7, "19#

Figure 7. Predicted Fourier coefficients with a preload: (a) static component along the principal
major axis; (b) static component along the principal minor axis; (c) in-phase component along the
principal major axis; (d) in-phase component along the principal minor axis; (e) out-of-phase
component along the principal major axis; (f) out-of-phase component along the principal minor
axis.
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Figure 8. Predicted Fourier coefficients with an initial gap: (a) static component along the
principal major axis; (b) static component along the principal minor axis; (c) in-phase component
along the principal major axis; (d) in-phase component along the principal minor axis; (e)
out-of-phase component along the principal major axis; (f) out-of-phase component along the
principal minor axis.

where the fs’s being in phase with the motion, are the stiffness terms, and the fc’s
being 90° out-of-phase, are the damping terms. Since the variable normal load
results in an asymmetric friction force, the inclusion of the time invariant terms
fb becomes necessary.

Figure 7 shows calculated Fourier coefficients for a case with a preload. In this
example, the directions of fu1 and fu2 are defined along the principal major and
minor axes of the input elliptical tangential relative motion, respectively. Thus, the
elliptical motion u can be expressed as [a sin u b cos u]T, in which a is the
amplitude of the major axis, b the amplitude of the minor axis, and ae b. The
predicted Fourier coefficients are plotted as functions of a and b that range within
0E aE 4 and 0E bE a. It is noticed that the boundary curves for b=0 are those
for the case of linear tangential relative motion that was studied in reference [15].
In this extreme case, the 2D tangential relative motion of the interface degenerates
into linear motion. Similarly, Figure 8 shows calculated Fourier coefficients for
a case with an initial gap.

Similarly to the friction force, the variable normal load must also be expressed
as a harmonic function since it cannot contribute damping and therefore must be
in phase with the input normal relative motion. The estimation of the effective
stiffness of the variable normal load can be found in reference [15].
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Figure 9. A 3-DOF oscillator under a friction constraint.

5. NON-LINEAR RESONANT RESPONSE

A 3-DOF oscillator is considered in this study to illustrate how the resonant
response of a structure can be effected by a friction contact experiencing 3D
contact kinematics. The oscillator, as depicted in Figure 9, can move in the xyz
space, and either is brought into contact with the ground by a preload n0 or has
an initial gap in between. The interface between the oscillator and the ground is
modelled as a flexible Coulomb friction contact, which is shown in Figure 2. When
subjected to external excitation, the xy motion of the oscillator is restricted by
friction, while the z motion may cause the normal load across the interface to vary.
Instead of using the conventional mass–spring–dashpot notation, this 3-DOF
system can be described alternatively by its modal information involving three
vibration modes. It can be shown that it requires at least two vibration modes
involved in the frequency range of interest to result in a response having elliptical
motion in the 3D space. Therefore, to simplify the analysis, only two modes are
considered, and the third mode is neglected from the analysis by assuming its
natural frequency to be out of the frequency range of interest. The system
parameters of the 3-DOF oscillator under investigation along with the harmonic
modal excitation are shown in Table 1, in which the modal damping ratio of 0·02
represents viscous damping in the system. The parameters of the friction interface
used in this investigation are: m=0·5, Ku =diagonal [20 20] and kv =20.

5.1.  

Using the single term harmonic balance scheme along with the estimated contact
force given in equation (19), a set of non-linear algebraic equations can be

T 1

Modal information of the 3DOF oscillator and the excitation

Mode Mass Frequency (Hz) Damping ratio Mode shape Excitation

1 1·0 0·9 0·02 (1 1 0·8)T 1·0{0°
2 1·0 1·1 0·02 (1 −1 0·6)T 1·0{0°
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Figure 10. Forced response of the 3-DOF oscillator. n0 values: W, −4; R, −1; T, 0; Q, 1; w,
2; U, 3; u, 5; e, 10; q, 32 (fully stuck).

obtained for the prediction of forced response. Under various levels of preload,
the forced responses of the 3-DOF oscillator are calculated and shown in Figure
10 as continuous curves. Since the resulting responses along the three axes are
similar, only the amplitude of the response along the x axis is presented in the
figure. It can be observed that there exist two linear cases, which are referred to
as the fully separate case and fully stuck case. The fully separate case occurs when
the interface has such a large initial gap that the vibrating oscillator cannot make
contact with the ground. Since the contact force is not present, two resonant
responses corresponding to the natural frequencies of the system can be clearly
seen. In the opposite way, when the preload of the interface exceeds some value,
the interface remains fully stuck. In this case, the friction contact does not dissipate
energy but provides additional stiffness, which arises from the compliance of the
interface, to the system to cause higher resonant frequencies.

In between the two linear cases, the non-linear contact force, including the
friction force and the variable normal load, appears to affect the response of the
system. The attenuation effect of the induced friction can be clearly seen from the
results. As the preload increases, the resonant response decreases until the
minimum response is reached at n0 =3. Beyond this preload, the damping effect
tends to reduce gradually towards the fully stuck case. The preload that minimizes
response is known as the optimal preload.

As for the variable normal load, in addition to its influence on the friction
characteristic, it can directly impose stiffness on the system. This non-linear
stiffness arises from the intermittent separation of the contact surface during the
course of vibration. It has been well known that this non-linearity can result in
a multi-valued response that can lead to so called ‘‘jump phenomena’’ [18]. In
Figure 10, two different types of jump phenomena can be clearly seen although
the effect of the variable normal load is mixed with that of friction. The first one
occurs when the interface has a moderate initial gap (n0 =−4); as the amplitude
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of the vibratory motion increases, the interface will stay in contact for some period
to impose a ‘‘hardening spring’’ effect on the response causing the resonant peak
to bend towards higher frequencies. The other jump phenomenon, however, occurs
as a moderate preload is applied (n0 =2). The increase in the amplitude of the
motion causes the preloaded interface to separate, and as a result, the interface
cannot provide stiffness to the system temporarily. The overall effect of the
temporary separation is similar to the effect of a ‘‘softening spring’’ that gives rise
to a response with a resonance peak bending towards lower frequencies.

5.2.     

The comparison of the predicted results with those of the time integration
method is also shown in Figure 10, in which the discrete data points denote the
time integration solutions. All the comparisons are made in the frequency range
near resonance. The time integration is carried out based on modal equations and
the time step is determined according to the excitation frequency. In this example,
there are at least 200 steps for a cycle of motion. A typical Runge–Kutta type
approach is used for the numerical solution. However, when stick–slip-separation
transition occurs in between two time instances, a Newton–Raphson type
approach is used to search for the exact transition time. From the results, it is
apparent that the approximate procedure can provide accurate solutions. This is
mainly due to the fact that the superharmonic components of the periodic contact
force are attenuated by the low-pass filtering effect of the structure used in this
example. Therefore, the assumption of sinusoidal displacement is sufficiently
accurate. When dealing with complex systems, the use of the Multi-Harmonic
Balance Method [19] may be necessary. Nevertheless, a slight discrepancy can still
be observed in the cases that have either small preload or small gap
(n0 =−1, 0, 1, 2). This is caused by the almost equal participation of the two
distinct non-linearities, stick-slip friction and intermittent separation, that renders
the displacement slightly off-harmonic.

5.3.  

As mentioned, when the gap is developed during the cycle of motion, the system
may exhibit multi-valued response that causes a jump phenomenon. A typical
example, occurring at n0 =−4 for the system under study, is shown in Figure 11.
Both solutions from the harmonic balance method and time integration method
are presented. It should be noted that one of the multiple solutions from the
harmonic balance method, shown as the dashed curve, is unstable [18]; separated
by the unstable response, the stable response consists of two curves, which are
referred to as the upper and lower branches. For the time integration method, a
finer frequency increment is used in the area of interest. The multiple solutions
from the time integration method can be obtained by using different initial
conditions; however, the unstable solutions cannot be reached because they are
not physically existent. From the time integration solutions, the multi-valued
response exists between 0·9440 Hz and 0·9472 Hz.

The ‘‘jumping’’ behavior can be clearly seen using the time integration
simulation with frequency sweeping across the jump. The simulation starts from
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Figure 11. Response of the oscillator at n0 =−4. Solid line: harmonic balance method; discrete
points: time integration method.

Figure 12. Time simulation of jump phenomenon.

the frequency 0·9470 Hz for 50 cycles (phase I), is then perturbed to 0·9480 Hz
for 120 cycles (phase II), and finally is perturbed back to 0·9470 Hz for 50 cycles
(phase III). The result is shown in Figure 12. With the selected initial condition,
the displacement at the end of phase I reaches the steady state amplitude at the
upper branch. In phase II, the steady state amplitude is reached after a transient
period and jumps from the upper branch to the lower branch. In phase III, while
the frequency is perturbed back to that of phase I, the steady state amplitude still
stays in the lower branch.

6. CONCLUSIONS

A 3D friction contact model is presented in this paper. In the proposed model,
the relative motion across the friction contact is resolved into two components:
in-plane tangential motion on the contact plane and the normal motion
component perpendicular to the plane. The in-plane tangential relative motion is
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two-dimensional, and it can induce stick–slip friction. On the other hand, the
normal relative motion can cause variation of the contact normal load and, in
extreme circumstances, separation of the two contacting surfaces. In this paper,
the joined effect of the 2D tangential relative motion and the normal relative
motion on the contact kinematics of a friction contact is examined and analytical
criteria are developed to determine the transitions among stick, slip, and
separation, when experiencing variable normal load. Using these transition
criteria, the induced friction force and the variable normal load can be predicted
for any given cyclic relative motions and hysteresis loops can be produced so as
to characterize the equivalent friction damping and nonlinear spring resistance of
the friction contact.

These non-linear friction damping and spring resistance along with the
harmonic balance method are then used to predict the resonant response of a
frictionally constrained 3-DOF oscillator. The predicted results are compared with
those of the time integration method and the damping effect, the resonant
frequency shift, and the jump phenomenon are examined. The predicted non-linear
response shows three distinct features: (1) attenuated resonant response due to
stick-slip motion at the friction contact, (2) higher resonant frequency due to
additional non-linear spring resistance, and (3) multi-valued response leading to
jump phenomena due to intermittent interface separation.
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